
Add to Section 1.3.1, p 11, as last paragraph. 

 A detailed model of muscular contraction appears in Smith et al., (2008).  This 

model integrates the biochemical and biomechanical aspects of actinomyosin contraction.  

Such details are beyond the scope of this text. 

 

ref: 

Smith, D. A., M. A. Greeves, J. Sleep, and S. M. Mijailovich, 2008, Towards a Unified 

Theory of Muscle Contraction. I: Foundations, Ann. Biomed. Engr. 36(10): 1624-1640. 

 



  Add to Section 2.2.3, before paragraph beginning “Not only do the joints. . . ,p. 70. 
 
 Bone mineral density has a large impact on bone strength, and bone mineral 

density decreases with age.  Women, in particular, are in danger of critical bone strength 

reduction due to osteoporosis. Fracture load averages about 6000 N for the L3* vertebra 

up until age 40, but decreases linearly thereafter at about 500 N/decade of life (Nelson et 

al., 2009). 

 Astronauts, too, are at risk for bone fracture because bone density decreases about 

17% per month in space (Nelson, et al., 2009).  Nelson et al., (2009) developed a 

probabalistic model of bone fracture risk for space travelers to the moon and Mars.  Their 

model predicted low fracture risks for short moon missions, but much higher risks for a 

longer Mars mission.  Wrist fracture was the most likely type of fracture, followed by 

spinal and hip fracture. 

 

Reference: 

Nelson, E. E., B. Lewandowski, A. Licata, and J. G. Myers, 2009, Development and 

Validation of A Predictive Bone Fracture Risk Model for Astronauts, Ann. Biomed. Engr. 

37:2337-2359. 

 

*The spinal column is classified into five vertebral regions: cervical, dorsal, lumbar, 

sacral, and coccygeal.  The lumbar portion is located in the lower back.  The L3 vertebra 

refers to the third of five lumbar vertebra. 

 

 



add to index 

 Osteoporosis 

 Astronaut bone strength 

 Bone Fracture 

 



Add to Section 3.2.1, as second to last paragraph: 
 
 

The normal percentage hematocrit in men is in the mid 40s. Trained endurance 
athletes can increase their sustained natural percentage hematocrit to the high 40s or low 
50s. Injecting the hormone erythropoietin can result in hematocrit percentages in the high 
50s or low 60s. Such an increase in the number of red blood cells in the body can vastly 
increase oxygen-carrying capacity and increase physical performance by 5-10%. 
However, blood with a hematocrit of 60 percent or higher becomes thick and easily 
clotted (Shermer, 2008). 
 
 
 
Ref:  
Shermer, M., 2008, The Doping Dilemma, Sci. Amer. 298(4): 82-89 (Apr). 



 

Add to Section 3.2.1, as next to last paragraph beginning “Exercising individuals 

exhibit. . .  ˝ , p. 128. 

 

 Red blood cells normally form reversible aggregates when flow rate is slow, but 

are torn apart and return to individual cells when flow rate increases (Fenech et al., 2009). 

Erythrocyte aggregation is almost totally responsible for non-Newtonian flow behavior of 

blood. 

 

 

Reference: 

Fenech, M., D. Garcia, H. J. Meiselman, and G. Cloutier, 2009,  A Particle Dynamic 

Model of Red Blood Cell Aggregation Kinetics, Ann. Biomed. Engr. 37: 2299-2309 

 

add to index: 

Blood cell aggregates 

non-Newtonian flow 

 



 

Add to Section 3.31, after the sentence ending with” . .   maintaining homeostasis of 

the brain.”, p. 164. 

 

A model of this brain blood autoregulation can be found in Payne et al., (2009). 

 

Reference: 

Payne, S. J., J. Selb, and D. A. Boas, 2009, Effects of Autoregulation and CO2 Reactivity 

on Cerebral Oxygen Transport, Ann. Biomed. Engr. 37:2288-2298, 

 

add to index: 

 Blood flow, brain 

 Brain blood flow 

 autoregulation, blood flow 

 



Add to Section 3.3.2, as last paragraph: 
 
 

Nitric oxide circulating in the blood is a significant factor in keeping small blood 
vessels open, and allowing them to provide oxygen-rich blood to working muscle. 
Without this nitric oxide, tissues can be starved for oxygen and the risk of heart attacks 
can increase by 15% or more. This sometimes happens with transfused blood (Mossman, 
2007; Park, 2007). 
 
Ref: 
 
Mossman, K., 2007, Crucial Factor Declines in Banked Blood. Proc.Nat.Acad.Sci. 
104(43): 16721-16722. 
 
Park, A., 2007, The Problem with Transfusions, Time 170(17):56 (22 Oct). 



3.4.6 Vascular Flow Model 

 Computational simulations of vascular blood flow can be used when  

experimental data is limited or unavailable.  They are used for the design and evaluation 

of vascular medical devices, planning of vascular surgeries, and predictions of outcomes. 

 Kim et al. (2009) have formulated a model of the aorta in which they coupled 

upstream left ventricular lumped-parameter characteristics and downstream lumped-

parameter Windkessel vessel characteristics to the three dimensional finite element 

description of the aorta (Figure 3.4.15).  The lumped-parameter heart model consists of 

an atrial pressure source (pLA), the mitral valve (diode), atrio-ventricular valve resistance 

(RLAV), and atrio-ventricular inductance (LAV).  It also includes the aortic valve (diode), 

ventriculo-arterial valve resistance (Rav), ventrictulo-arterial inductance (LVa), and a time-

varying left ventricle elastance function (E(t)).  The inductances allow for simulation of 

blood flow inertia, and the time-varying elastance accounts for ventricular contractivity 

changes as the ventricle contracts and relaxes. 

 The aorta was realistically modeled to include the aortic arch and four subordinate 

vessels: right subclavian artery, right carotid artery, left carotid artery, and left subclavian 

artery (Figure 3.4.15).  Parameter values for the heart and these vessels appear in Tables 

3.47 and 3.48 for rest and exercise conditions.  The time-varying elastance function has 

been diagrammed in Figure 3.4.16.  The authors stated that, if the elastance function is 

normalized with a maximum value and the time from the onset of systole to the 

appearance of maximum elastance, the shape of the elastance funtions remains the same 

and can be used for different conditions of contractability, vascular loading, heart rate, 

and heart disease. 



 Intraventricular pressure is related to ventricular volume through the elastance: 

  pLV(t) = E(t) [VLV(t) – VLV(0)]                                       (3.4.51) 

where pLV(t) is ventricular pressure in N/m2; E(t) is left ventricle elastance in N/m5 (the 

inverse of compliance); VLV(t) is ventricular volume in m3; VLV(0) is the basic volume of 

the ventricle in m3. 

 When left ventricular pressure rises above aortic pressure, the aortic valve opens 

and blood flows into the aorta and arterial system.  This is systole.  Aortic flow depends 

upon the pressure difference between left ventricle and aorta. Ventricle and aorta are 

closely coupled during this time.  Aortic pressure was given as: 

          pa(t) = E(t) [VLV(t) – VLV(0)] - 
a
V! (t)Rav - a

V!! LVa 

  = E(t) [VLV(tao) - (0)] V - ds (s)V LVtao

t !!  

   - Vaa av L V - R (t) !!!
a

V                  (3.4.52) 

where pa(t) is aortic inlet pressure in N/m2; E(t) is the time-varying ventricular elastance 

function in N/m5; VLV (t) is the time-varying ventricular volume in m3; VLV(0) is the 

ventricular volume remaining after emptying in m3; 
a
V! (t) is the aortic volumetric blood 

flow rate in m3/sec; Rav is the aortic valve resistance in N·sec/m5; 
a
V!! is aortic volume 

acceleration in m3/sec2; LVa is the ventricle to aorta inertance in N·sec2/m5; 

tao is the time when the aortic valve opens in sec; t is general time in sec; s is a dummy 

variable in sec. 

 During systole, when blood flows into the aorta, the authors used a Neumann 

boundary condition1 to solve the coupled upstream ventricular conditions to the 

downstream three-dimensional finite element model of the aorta.  During diastole, the 



aortic valve is mostly closed, and there is no flow into the aorta.  The authors used a 

Dirichlet boundary condition1 in that case.  They used a Dirichlet boundary condition for 

the short time during the transient closing of the aortic valve when there is retrograde 

aortic flow back into the ventricle. 

 They also included cardiac atrial action to fill the ventricle.  When the mitral 

valve was opened, left atrial pressure was given as: 

  pLA(t) = E(t) [VLV(t) – VLV(0)] + 
oLA

V! (t)RLAV + 
LA

V!! LAV 

  = E(t) [VLV(tmo) - (0)]  - ds (s) LVoLAtmo VV
t !!  

   + AVLALAV L   R (t) VV
oLA

!!! +     (3.4.53)  

where pLA(t) is left atrial pressure in N/m2; 
oLA

V! (t) is atrial blood flow rate in m3/sec2; 

LAV is the atrial-to-ventricular inertance in N·sec2/m5; tmo is the time when the mitral 

valve opens in sec.  All other symbols are as defined previously. 

 The authors assumed that blood was a Newtonian fluid with a density of 1060 

kg/m3 (1.06 g/m3) and a dynamic viscosity of 4 g/m·sec (0.04 dynes·sec/cm2).  Blood 

vessel walls were modeled as linear elastic material with Poisson’s ratio2 of 0.5, wall 

density of 1000 kg/m3 (1.0g/cm3), and a thickness of 10-3m (0.1 cm). They approximated 

physical parameters from: 

  tmax = 3/  
c
T    at rest     (3.4.54 a) 

                        tmax =  
c
T /2   during exercise    (3.4.54b) 

              

   

                                                       



Emax = 
pR 

c

c

T

!
                 (3.4.55)                  

  VLV (0) = Vs - 
max

syst

E

p 9.0
               (3.4.56) 

where tmax is the time from the beginning of systole to the maximum elastance value in 

sec; T c is the cardiac cycle period in sec; 
c

!  is a dimensionless parameter that varies 

between 1 and 2; Rp is the total resistance of the systemic circulation in N·sec/m5; Vs is the end-

systolic ventricular volume in m3; psyst is the ventricular systolic pressure in N/m2.  Numerical 

values appear in Tables 3.4.7 and 3.4.8. 

 The model was run for both resting and exercise conditions.  Flows and pressures were 

calculated for the aortic inlet, descending thoracic aorta, right and left carotid arteries, and right 

and left subclavian arteries.  Flow rates for aortic inlet and right carotid artery inlet are shown in 

Figures 3.4.17 and 3.4.18.  Additional flow and pressure results can be found in the original 

article (Kim et al., 2009). 

 

Table 3.4.7 Inlet Conditions for the Aorta Model (Kim et al., 2009) 

RLAV  10!105 N·sec/m5 (10 dyne·sec/cm5) 

LAV  0.67 !105 N·sec2/m5 (0.67 dyne ·sec2/cm5) 

Rav  10 !105 N·sec/m5 (10 dyne·sec/cm5) 

LVa  0.69 !  105 N·sec2/m5 (0.69 dyne ·sec2/cm5) 

Emax  2.7 !  10 N/m5 (2.0 mmHg/cm3) 

VLV (0)  -33 !10-6 m3 (-33 cm3) 

pLA rest 1870 N/ m2 (14 mm Hg) 

 exercise 1870 N/ m2 (14 mm Hg) 



tmax rest 0.32 sec (0.32 sec) 

 exercise 0.3 sec (0.3 sec) 

Tc rest 0952 sec (0.952 sec) 

 exercise 0.6 sec (0.6 sec) 

 
Table 3.4.8   Outlet conditions for the Aorta Model (Kim et al., 2009) 
 
                             Rest      Exercise 
Right-Subclavian Artery                         
Rpa 1.04 !108 N·sec/m5 

  (1040 dynes·sec/cm5) 
1.04!108 N·sec/m5 
  (1040 dynes·sec/cm5) 

Ca 8.74 !  10-10 m5/N 
  (8.74 !10-5cm5/dyne) 

8.74 !10-10 m5/N 
  (8.74 !10-5 cm5/dyne) 

Rda 1.63 !109 N·sec/m5 
  (16300 dyne·sec/cm5) 

1.63 !109 N·sec/m5 
  (16300 dyne·sec/cm5) 

 
 
Right and Left Carotid Arteries 
Rpa 1.18 !  108   

  (1180) 
1.18 !108  

  (1180) 
Ca 7.70 !10-10  

  (7.70 !  10-5) 
7.70 !10-10  
  (7.70 !10-5) 

Rda 1.84 !109   

  (18400) 
1.84 !109  
  (18400) 

 

Left Subclavian Artery 
Rpa 9.70 !107   

  (970) 
9.70 !107  
  (970) 

Ca 9.34 !10-10  
  (9.34 !10-5) 

9.34 !10-10  
  (9.34 x 10-5) 

Rda 1.52 !109   
  (15200) 

1.52 !109 
  (15200) 

 
 
Descending Thoracic Aorta 
Rpa 1.88 !107   

  (188) 
7.5 !106   
  (75) 

Ca 4.82 !109  
  (4.82 !10-4) 

4.82 !10-9  
  (4.82 !10-4) 

Rda 2.95 !108  
  (2950) 

1.27 !108  
  (1270) 



 

Symbols for Rpe, Rda, and Ca appear in Figure 3.4.15.  Units for Rpa and Rda are N·sec/m5.  

Values in parentheses are original units in dyne·sec/cm5. 

Units for Ca are m5/N.  Values in parentheses are original units in cm5/dyne. 



Footnotes 

1) A Neumann boundary condition exists when there is a specified flow across a  

 boundary.  A Dirichlet boundary condition exists when the specified boundary 

 condition is a value of the function.  Here, the Dirichlet condition means that a 

 pressure value is specified when the aortic valve closed and there is no flow. 

 

2) As a material is elastically lengthened longitudinally, it concomitantly contracts 

laterally. The ratio of lateral unit deformation to linear unit deformation within 

the elastic limit is known a Poisson’s ratio. 



References 

Kim, H.J., I.E. Vignon-Clementel, C. A. Figueroa, J. F. LaDisa, K.E. Jansen, J. A. 

Feinstein, and C. A. Taylor, 2009, On Coupling a Lumped Parameter Heart Model and a 

Three-Dimensional Finite Element Aorta Model, Ann. Biomed. Engr. 37(11): 2153-2169. 

 

Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor, 2010, Outflow 

Boundary Conditions for Three-Dimensional Simulations of Non-Periodic Blood Flow 

and Pressure Fields in Deformable Arteries, Comput. Meth. Biomech. Biomed. Engr. 



 

 

 

Figure 3.4.15.  Lumped-parameter heart and blood vessel models linked to upstream and 

downstream finite-element model of the aorta (Kim et al., 2009). 



 

 

 

Figure 3.4.16.  Time varying elastance function for the left ventricle used in the aorta 

model (Kim et al., 2009). 



 

 

 

Figure 3.4.17.  Time varying flow rate model results at the inlet to the aorta for rest and 

exercise (Kim et al., 2009). 



 

 

 

Figure 3.4.18.  Time varying flow rate model results at the inlet of the right carotid artery 

(Kim et al., 2009).  Notice that there is a period of backflow that occurs during diastole.  

Additional flows and pressure results can be found in the original article. 



Example 3.4.6.1 Carotid Blood Pressure.  Calculate blood pressure in the  

  right carotid artery 0.1 sec after the beginning of systole. 

Solution 

 The model itself can be used to calculate right carotid artery blood pressure as a 

function of time, and in the original article by Kim et al., (2009) are presented graphs of 

arterial pressures with time.  Nonetheless, right carotid arterial pressure can be calculated 

using their lumped-parameter carotid artery model (Figure 3.4.15) plus minimal flow rate 

data given in Figure 3.4.18. 

 From the model in Figure 3.4.15, it can be seen that the artery is modeled as a 

parallel combination of Rda and Ca in series with the resistance Rpa.  The question 

becomes one of determining what inlet pressure is required to push the flow rate 

appearing in Figure 3.4.18 through this simple component network? 

 The total inlet pressure (p) equals the pressure (p1) appearing at the junction of  

Rpa, Rda, and Ca plus the pressure drop )( paTOTRV! across Rpa: 

   p = p1 + Rpa TOT
V!  

Realizing that the flow 
TOT
V! = 

Ca
V! + 

Rda
V!  

This same equation can be obtained from Kirchoff’s node equation. 

Flow through Rda ( Rda
V! ) is just: 

         
Rda

V! = p1/Rda  

and flow through the capacitor is:  

         
Ca

V!  = Ca
dt

dp
1  

 



Thus,          

      
TOT

V!  = Ca 
dt

dp
1  

da

1

 
R

p
+  

From Figure 3.4.18, total flow (V! TOT) can be measured at the time of 0.1 sec as 26.5 

!10-6 m3sec, and the flow is not steady, but rising.  The rising is important because there 

is time involved in the equation above.  To simplify this problem somewhat, it will be 

assumed that 
TOT

V! rises linearly with time.  This approximation can be seen to be nearly 

correct based on the shape of the curve in Figure 3.4.18. 

 Note also that there is a short time delay before flow begins to increase. Again, to 

simplify the problem, time will be shifted by the amount of this delay (measured from the 

Figure as 0.0216 sec).  Thus, 0.1 sec in the original time scale becomes 0.0784 sec in the 

shifted time scale. 

 From the assumption of linearly increasing 
TOT

V! : 

  
TOT

V!  (t) = kt 

             
TOT

V!  (0.0784 sec) = k (0.0784 sec) = 26.5 !  10-6 m3/sec 

                                  k = 3.38 !10-4 m3/sec2 

This makes the first order differential equation for p1: 

Ca kt  
R

p
   

da

1 1 =+
dt

dp
 

         
a

1
1

C

kt
  p

1
  =+
!dt

dp  



where ! = CaRda.  This differential equation requires a complementary solution and a 

particular solution.  The complementary solution (p1c) is to be found first.  The auxiliary 

differential equation is: 

dt

dp c1  + 
!

1  pic = 0 

or,  

ic

c

p

dp
1 = 

!

1  dt 

integrating, 

   ln pic = 
!

t + A 

or, 

   
ic
p  = !/t

Ae
"  

where A is a constant of integration to be found later based on initial conditions. 

 The particular solution (p1p) to the differential equation requires a form for p1p that 

includes a term with time involved.  We can try a function of the form: 

   p1p = at + b 

This makes our original differential equation: 

   t
dt

dp p

a

1p

 1

C

k
  

b
  

at
  a  p 

1
  =++=+

!!!
 

Collecting terms on both sides of the equation involving t1: 

   
a
C

k
  

a
=

!
  

   
a
C

!k
  a =  



Collecting terms on both sides of the equation involving to : 

   0  
b

  a =+
!

 

    b = -
a
C

2
k!   

Thus,    

p1p = 
aa
CC

t
2

k
 - 

 k !!  

Note that each term in this equation is dimensionally homogeneous with the units N/m2. 

  Total p1 equals pic + p1p: 

           p1 = 
a

2

a

/

C

k
 - 

C

 tk
  

!!!!
+

"
Ae   

or, 

  !-t/
Ae  =p +

TOT
V

k
!

 pa

a

2

a

R  
C

k
 - 

C

 t 
+

!!  

To solve for the value of A, we can assume that p=0 when t=0.  This is true for both rest 

and exercise as long as we use the time offset described previously.  Exercise flow rates 

can be seen to be negative prior to this delay, and this implies negative pressures. 

 Putting initial conditions into the previous equation: 

   0 = Ae-0 + TOTpa

aa

VR
C

k

C

k
!

 

2

   -  
)0(

+
!!  

   0 = A + 0 - 
a
C

k
2! + TOTpaVR !

 
 

   A = 
a
C

k
2!  - TOTpaVR !

 
 



Which gives: 

   p = (
a
C

k
2!  - ) TOTpaVR ! e !/t" + TOTpa

aa

R
C

k

C

tk
V    - 

 
2

!+
!!  

   p = 
a
C

k! [ ] !!! /-t/ 1(   )e-(1   t

TOTpa eVRt
"

"+" ! ) 

Calculating, 

   
N

m
 10  (7.70 )

m

sec N
 10  (1.84     

5
10-

5

9
!

"
!==

ada
CR# )    

                                  = 1.4168 sec 

   sec)/10  5.26)(sec/m N 10  (1.18 3-658

 mVR TOTpa !"!=!  

            = 3127 N/m2 

   (1-e !/t" ) = 1 – e-(0.0784/1.4168) = 0.05383 

    
secm

N
 621,920  

)/10  (7.70

sec) (1.4168 )sec/10  (3.38
 

2510-

23 -4

!
=

"

"
=

Nm

m

C

k

a

#
 

Thus, p at t=0.078 sec (at 0.1sec real time) is:  

   p = 621,920 
secm

N

2
!

[0.0784 sec - (1.4168 sec) (0.05383)]  

    + 3127 
2

m

N (0.05383) 

   p = 1495 N/m2 

Remark: This value is only about one-tenth of the carotid artery pressure given in the 

original article at a time of 0.1 sec.  This discrepancy can be ascribed to: 1) flow and 

pressure at the inlet to the carotid artery are periodic; the analysis in this example did not 

account for periodicity, 2) it took several cardiac cycles for the Kim et al. model to 

converge to a periodic solution (Vignon-Clementel et al., 2010), and 3) carotid artery 



compliance induces a phase angle between pressure and flow that is not completely 

accounted for in this example. 



Add to List of Symbols 

Ca  arterial compliance, m5/N 

E(t)  left ventricle elastance, N/m5 

Emax  maximum value of ventricular elastance, N/m5 

LAV  atrial-to-ventricular inertance, N·sec2/m5 

LVa  ventriculo-arterial inertance, N·sec2/m5 

psyst  ventricular systolic pressure, N/m2 

Rda  arterial resistance term, N·sec/m5 

Rpa  arterial resistance term, N·sec/m5 

s  dummy variable, sec 

Tc   time between heart beats, sec 

tao  time when aortic valve opens, sec 

tmax  time when maximum ventricular elastance occurs, sec 

tmo  time when mitral valve opens, sec 

a
V!   aortic flow rate, m3/sec 

a
V!!   aortic volume acceleration, m3/sec2 

LA
V!!   atrial volume acceleration, m3/sec2 

! c  dimensionless cardiac parameter 



Add to Index: 

Aorta 

Aorta model 

Atrium, left 

Blood flow, aorta 

         carotid 

         subclavian 

Blood properties 

Carotid artery 

Diastole 

Elastance, ventricular 

Heart model 

Inertance, atrial 

      ventricular 

Model, aorta 

       finite element 

       lumped parameter 

Model boundary conditions 

Pressures, aortic 

      arterial 

      ventricular 

Resistance, 

       aortic valve 



       arterial 

       mitral valve 

Subclavian artery 

Systole 

Ventricle, left 
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